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Abstract

Piezoresponse force microscopy (PFM) has evolved into a useful tool for measurement of local properties of

piezoelectric materials with great potential in applications such as data storage, ferroelectric lithography and nonvolatile

memories. In order to utilize PFM for low dimensional materials characterization, a comprehensive analytical modeling

based on the coupled motion of PFM in all three directions is proposed. In this respect, the mechanical properties of

sample are divided into viscoelastic and piezoelectric parts. The viscoelastic part is modeled as a spring and damper in the

longitudinal, transversal and lateral directions, while the piezoelectric part is replaced with resistive forces acting at the end

of microcantilever. It is shown that there is a geometrical coupling between flexural-longitudinal and lateral-torsional

vibrations of microcantilever used in PFM. Moreover, assuming a general friction between tip and sample, additional

coupling effect is also taken into account. Through an energy-based approach, it is seen that the PFM system can be

governed by a set of coupled partial differential equations along with nonhomogeneous and coupled boundary conditions.

A general formulation is then derived for the mode shape, frequency response, and state-space representation of system.

Numerical simulations indicate that mode shapes, natural frequencies and time responses of microcantilever beam are

heavily dependent on the viscoelastic and piezoelectric properties of the samples. Moreover, the results demonstrate that

utilizing only transversal vibration is not a valid strategy for quantifying mechanical properties of materials with arbitrary

crystallographic orientation. Hence, the proposed model with the built-in coupling effects can be a key development for

acquiring precise measurements.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, rapid development in scanning probe microscopy-based techniques has made it possible to
study properties of materials in the scale of grains. Among the many scanning probe microscopy techniques,
atomic force acoustic microscopy and piezoresponse force microscopy (PFM) have evolved into useful tools
for this purpose due to their ease of implementation and high resolution [1–8]. The operational principle of
atomic force acoustic microscopy is based on measuring the contact stiffness of the tip-sample junction as the
result of the change in the dynamic properties of microcantilever. In this technique, the sample is vibrated by
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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ultrasonic transducer on the resonant frequencies of cantilever and through measuring contact resonant
spectra, the contact stiffness of material can be determined [8]. While the atomic force acoustic microscopy
allow us to probe the tip-sample interaction force such as stiffness and adhesion, PFM enables investigation of
local piezoelectricity of material as well. For this reason, this technique has been recognized as a useful tool in
the field of micro- and nano-scale electromechanical sensors and actuators [9–11].

PFM functions based on applying an external electrical field between a rear electrode on the piezoelectric
sample and a conducting atomic force microscopy tip. In the static mode, application of uniform electric field
results in elongation or contraction of sample depending on the polar direction and applied field. From
induced strain through electric field, the piezoelectric coefficient of sample can be determined. However, the
domain imaging based on the detection of static deformation is difficult. The reason is that the separation of
static piezoresponse deflection and deflection signal due to surface roughness is not an easy task [12]. To
improve the sensitivity of the static mode, a dynamic piezoresponse image method based on the voltage
modulation approach has been introduced [12–15]. In this method, a periodic bias external electrical field is
applied to a rear electrode on the sample and a conducting tip. The periodic bias voltage induces local
piezoelectric vibration which can be detected by tip. These vibrations depend on the orientation of
polarization vector, and arise due to converse piezoelectric effect [16]. The phase of electromechanical
response of surface provides information about the direction of polarization of surface, while the amplitude of
vibration yields information about the piezoelectric coefficients [17,18].

In general case, when a bias voltage is applied to a sample with arbitrary crystallographic orientation, the
response of the piezoelectric material results in both in-plane and normal components of displacement [19].
Hence, the microcantilever can vibrate in all three directions which results in a coupled bending–longitudinal-
torsional motion of microcantilever. The coupled motions in PFM occur due to: (i) presence of friction force
at the tip-sample junction and (ii) geometrical coupling originated from the rotation of tip at the free end of
microcantilever due to transversal and lateral bending of microcantilever.

Because of practical importance of coupled motions, many studies have been reported on the effect of
coupling terms on the natural frequencies, mode shapes and time responses of the beams [20–24]. Neglecting
the effect of warping, Dokumaci [25] obtained the natural frequencies of a cantilever coupled in bending and
torsion. His work was later extended by Bishop et al. [26] including the wrapping of cross section. A dynamic
stiffness matrix analysis approach was then introduced by Banerjee et al. [27] to determine the natural
frequencies and mode shapes of the coupled Euler–Bernoulli beam. The coupled vibrations of beams including
warping, shear deformation and rotary inertia effects were studied by Bercin and Tanaka [28]. The coupled
free and forced vibrations of a beam with tip and in-span attachments were investigated by Gokdag and
Kopmaz [29]. And recently, Mahmoodi and Jalili have investigated the nonlinear flexural–torsional coupled
vibration of microcantilever sensors [30]. The results obtained from these studies have addressed the presence
of bending, longitudinal or torsional mode natural frequency in the vibration spectra of the other modes.

Motivated by these considerations, the objective of this study is to develop a comprehensive model for
dynamic behavior of vector PFM system under applied combined electrical and mechanical loadings. For this
purpose, PFM is considered as a suspended microcantilever beam with a tip mass in contact with a
piezoelectric material. Furthermore, the material properties are expressed in two forms; Kelvin–Voigt model
for viscoelastic representation of material and piezoelectric force acting on the tip as a result of response of
material to applied electric field. Since the application of bias voltage to the tip results in the surface
displacement in both normal and in-plane directions [31], the microcantilever is considered to vibrate in all
three directions with coupled flexural-longitudinal and lateral-torsional motions. In this model, the effect of
friction between sample and tip is also taken into account.

Through an energy-based approach, it is shown that the PFM system can be governed by a set of coupled
partial differential equations along with nonhomogeneous and coupled boundary conditions. A general
formulation is then derived for the mode shape and frequency response of the system. Finally, using the
method of assumed modes, the governing ordinary differential equations of the system and its state-space
representation are derived under applied external voltage. Results demonstrate that mode shape, resonance
frequency and time response of microcantilever are heavily dependent on the coupling terms arising from
viscoelastic and piezoelectric properties of samples. It is shown that different materials exhibit various
constraints at the end of microcantilever. More specifically, materials with higher stiffness can convert the
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clamped-free condition of microcantilever to clamped-hinged one. Moreover, it is shown that the coupled
damping terms of material at the tip-sample junction significantly affect the time response of the system. The
modeling framework presented in this work can also be easily reduced to atomic force acoustic microscopy
problem.
2. PFM operational modes and function

PFM functions based on application of a periodic bias external electrical field between a rear electrode on
the sample and a conducting tip (see Fig. 1). The periodic bias voltage is V tip ¼ Vdc þ V ac cosðwtÞ in which
Vdc is the DC component of the bias voltage used to measure the static deflection of the microcantilever.
V ac cosðwtÞ is a small AC voltage which is applied to the tip in order to induce local piezoelectric vibration.
The piezoresponse of the surface can be detected as the first harmonic component of bias-induced tip
deflection d ¼ d0 þ A cosðwtþ jÞ. The amplitude of vibration, A, provides information about the
piezoelectric coefficients of surface, while the phase of electromechanical response of surface, j, yields
information about the polarization direction of surface [4,17].

Utilizing Hertzian contact mechanics at the tip-sample junction and assuming linear voltage dependency of
indentation [4,31], the relation between the indentation load P, indenter voltage V, and indentation depth h

can be expressed as [31]

h ¼
a2

R
þ

2b
3a

V and P ¼ a
a3

R
� baV , (1)

where a and b are elastic and piezoelectric properties of material, respectively, R is the tip radius and a is the
contact radius. In this study, based on Eq. (1), the behavior of sample is divided into two parts; viscoelastic
and piezoelectric. The viscoelastic response of material against indentation force is modeled as a spring and
damper at all three directions, while the piezoresponse of sample is considered as a resistance force, Ftip, at the
free end of cantilever.

Fig. 2 depicts the schematic of mechanical equivalent circuit of PFM. One end of the beam is clamped to the
base position, while the tip is attached to the free end of the beam. The sample and tip are in the contact mode
and any change in the topography of surface will affect the indentation depth of indenter. To avoid this, the
boundary control input force, f(t), is used at the base unit. In general case, when a bias voltage is applied to a
Fig. 1. A schematic of tip-sample junction in piezoresponse force microscopy.
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Fig. 2. Proposed schematic representation of piezoresponse force microscopy.

Fig. 3. A schematic of microcantilever subjected to longitudinal and lateral piezoelectric forces.
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sample with arbitrary crystallographic orientation, the response of the piezoelectric material results in both in-
plane and normal components of displacement [19]. For this reason, the beam is considered to vibrate in all
three directions. The free end of beam with the equivalent tip mass is connected to springs and dampers in the
vertical, longitudinal and lateral directions which represent the viscoelastic resistance of material to tip
movement. It is obvious that lateral and vertical components of viscoelastic response acting on the cantilever
result in bending in these directions, while in the longitudinal direction the response of material is an axial
force acting at the tip mass. Moreover, the piezoresponse of material is considered as Ftip in all three directions
(i.e., Ftip-x, Ftip-y and Ftip-z). In our proposed model, the tip height is also taken into account. As a result,
piezoresponse of material acting at the end of tip causes an external moment and torsion in the longitudinal
and lateral directions, respectively. Fig. 3 depicts longitudinal and lateral piezoelectric forces acting at the tip
of microcantilever.

In this study, the effect of friction force presented in the tip-sample junction in both longitudinal and lateral
directions are considered as base excitations given by

ufric-x ¼ Dx ¼
mxF tip-z

kx

and ufric-y ¼ Dy ¼
myF tip-z

ky

; kx ¼ kya0, (2)

where mx and my are the coefficients of friction in x and y directions, respectively. Eq. (2) indicates that the
friction force in PFM system is a time-dependent parameter.

3. Distributed-parameters modeling of PFM

In this section, a general distributed-parameters base modeling approach is adopted for the analysis of
dynamic behavior of PFM. For this purpose, the Euler–Bernoulli model is used for microcantilever beam
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configuration as shown in Fig. 2. The microcantilever beam has rigidity EI, mass moment of inertia J, linear
density r and the length L. The equivalent spring constants of sample are kx, ky and kz, and damping
coefficients are Cx, Cy and Cz in x, y, z directions, respectively. The microcantilever base has the displacement
of d(t) and the total mass of m, while the tip at the free end of beam has mass of me. The friction coefficients
between sample and tip are mx and my for in-plane motions. In this work, the effect of viscous air damping and
structural damping in the microcantilever beam are also taken into account.

The total kinetic energy of the system can now be expressed as

KE ¼
1

2
mð _dðtÞÞ2 þ

1

2

Z L

0

r½ð _dðtÞ þ wtðx; tÞÞ
2
þ v2t ðx; tÞ þ u2

t ðx; tÞ�dx

þ
1

2
me½ð

_dðtÞ þ wtðL; tÞÞ
2
þ v2t ðL; tÞ þ u2

t ðL; tÞ� þ
1

2

Z L

0

Jy2t ðx; tÞdx, (3)

where subscripts ( � )t and ( � )x indicate partial derivatives with respect to the time variable t and position
variable x, respectively. wðx; tÞ, uðx; tÞ and vðx; tÞ are the vertical, longitudinal and lateral displacements of
beam, respectively. yðx; tÞ represents the torsion along x-axis due to applied voltage and friction. In the above
equation, the first term is the kinetic energy of the base, the second and third terms are that of beam and tip,
respectively. The last term represents the kinetic energy due to torsion of beam along x-axis.

The total potential energy of the system can be written as

PE ¼
1

2

Z L

0

EIyyw2
xxðx; tÞdxþ

1

2

Z L

0

EIzzv2xxðx; tÞdx

� �
þ

1

2

Z L

0

EAu2
xðx; tÞdxþ

1

2

Z L

0

CTy
2
xðx; tÞdx

þ
1

2
kx½ðuðL; tÞ þ ufric-xÞ þ wxðL; tÞH�

2 þ
1

2
ky½ðvðL; tÞ þ ufric-yÞ � yH�2 þ

1

2
kzw

2ðL; tÞ

� �
, (4)

where H is the height of tip at the free part of beam, and CT is the torsional stiffness of beam. The above
equation indicates that potential energy consists of four parts: the potential energy of the beam due to bending
in vertical and lateral direction (first term), the potential energy of the beam due to longitudinal movement
(second term), torsion along x-axis (third term), and the elastic potential energy of sample in the longitudinal,
lateral and vertical directions, respectively (last term). In addition to tip displacement at the free end of
microcantilever, the elastic potential of sample in the longitudinal and lateral directions include base excitation
terms due to presence of friction and geometrical coupling due to rotation of tip as a result of transversal and
lateral bending. In the above equation, wxðL; tÞH presents the geometrical coupling term between transversal
and longitudinal direction and yH indicates coupling between lateral bending and torsional displacement. In
this model, the friction effect is implemented as a base excitation in the elastic potential energy of sample. The
base displacement of sample is directly related to piezoelectric properties of material obtained in Eq. (2).

The boundary control input force f(t) at the base unit, the piezoelectric force, capacitive forces between tip
cantilever assembly and surface Q(x,t), structural damping C, and viscous air damping B are all considered in
the virtual work. While the viscous air damping B, which is the case for this work, can be fairly assumed as a
frequency independent parameter, the viscous liquid damping is frequency dependent. It has been shown that
at higher frequency, the volume of liquid excited by cantilever is reduced compared to lower frequencies
vibration which results in reduced viscous damping in the higher resonances [32,33]. Moreover, the viscous
liquid loss has been shown to significantly affect the resonance frequencies of microcantilever. In this respect,
the effect of surrounding liquid on the dynamic properties of cantilever has been investigated by other
researcher using added mass coefficient [34,35]. However, in the current case (viscous air damping) and for
simplicity and without loss of generality, it is assumed that viscous air damping and structural damping
coefficients in the transversal and lateral directions are similar.

Moreover, the piezoelectric and damping forces acting at the tip-sample junction are considered as an
equivalent impulse (D) forces acting at very small distance (e) from end of microcantilever. This approach can
ease the subsequent mathematical procedures used to homogenize the boundary conditions. More especially,
utilizing this approach the damping terms in the boundary conditions can be removed and transferred into the
equations of motion. However, the conventional method is to consider damping terms in the boundary
conditions which makes the nature of them time-dependent. In this case, the eigenvalues and subsequent mode
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shapes of the system become complex, which are more complicated to deal with compared to the former
alternative proposed here. Moreover, the representation of the entire system in the state-space for a control
purposes will become more involved and not trivial.

Considering all these points, the virtual work of the system can be expressed as

dWnc ¼ f ðtÞddðtÞ þ

Z L

0

Qðx; tÞdwðx; tÞdx� B

Z L

0

wtðx; tÞdwðx; tÞdx

�

þ C

Z L

0

wxtðx; tÞdwðx; tÞdxþ B

Z L

0

vtðx; tÞdvðx; tÞdxþ C

Z L

0

vxtðx; tÞdvðx; tÞdx

�

þ

Z L

0

Dðx� Lþ �ÞF tip-zðtÞdwðx; tÞdx

�
þ

Z L

0

Dðx� Lþ �ÞF tip-yðtÞdvðx; tÞdx

þ

Z L

0

Dðx� Lþ �ÞF tip-xðtÞduðx; tÞdx

�
þ

Z L

0

Dðx� Lþ �ÞF tip-xðtÞHdwxðx; tÞdx

�

þ

Z L

0

Dðx� Lþ �ÞF tip-yðtÞHdyðx; tÞdx

�
� Cz

Z L

0

Dðx� Lþ �ÞwtðL; tÞdwðx; tÞÞdx

�

þ Cx

Z L

0

Dðx� Lþ �Þ½utðL; tÞ þ ut;fric-x þ wxtðL; tÞH�duðx; tÞdx

þ Cy

Z L

0

Dðx� Lþ �Þ½vtðL; tÞ þ ut;fric-y � ytðL; tÞH�dvðx; tÞdx

�

� CxH

Z L

0

Dðx� Lþ �Þ½utðL; tÞ þ ut;fric-x þ wxtðL; tÞH�

�
dwxðx; tÞdx

þ CyH

Z L

0

Dðx� Lþ �Þ½vtðL; tÞ þ ut;fric-y � ytðL; tÞH�dyðx; tÞdx

�
, (5)

where d( � ) denotes variation of the arguments. The above equation expresses the virtual work of the system
due to; boundary control input force (first term), capacitive forces between tip-cantilever assembly and surface
(second term), microcantilever damping terms in transversal and lateral directions (third term), piezoelectric
forces of sample in all three directions (fourth term), moment and torsion due to piezoelectric force in the
longitudinal and lateral directions (fifth term), material damping forces (sixth term), and moment and torsion
due to material damping terms in the longitudinal and lateral directions (last term).

The extended Hamilton’s principle can be expressed asZ t2

t1

dðKE� PEþWncÞdt ¼ 0. (6)

Substituting Eqs. (3)–(5) into Eq. (6) yields the following partial differential equations for the motion of PFM:
(1) For vertical vibration of microcantilever:

r½ €dðtÞ þ wttðx; tÞ� þ EIyywxxxxðx; tÞ þ Bwtðx; tÞ þ Cwxtðx; tÞ

� CxHDxðx� Lþ �Þ½utðL; tÞ þ wxtðL; tÞ� þ CzDðx� Lþ �ÞwtðL; tÞ

¼ Qðx; tÞ � Dxðx� Lþ �ÞHF tip-xðtÞ þ CxHDxðx� Lþ �Þut;fric-x þ Dðx� Lþ �ÞF tip-zðtÞ. (7)

(2) For base motion:

m €dðtÞ þ

Z L

0

r½ €dðtÞ þ wttðx; tÞ�dxþme½
€dðtÞ þ wttðL; tÞ� ¼ f ðtÞ. (8)

(3) For lateral vibration of microcantilever:

rvttðx; tÞ þ EIzzvxxxxðx; tÞ þ Bvtðx; tÞ þ Cvxtðx; tÞ þ CyDðx� Lþ �Þ½vtðL; tÞ �HytðL; tÞ�

¼ Dðx� Lþ �ÞF tip-yðtÞ � CyDðx� Lþ �Þut;fric-y. (9)
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(4) For torsion of microcantilever:

Jyttðx; tÞ � CTyxxðx; tÞ þ CyHDðx� Lþ �Þ½vtðL; tÞ �HytðL; tÞ�

¼ Dðx� Lþ �ÞHF tip-yðtÞ � CyHDðx� Lþ �Þut;fric-y. (10)

(5) For longitudinal vibration of microcantilever:

ruttðx; tÞ � EAuxxðx; tÞ þ CxDðx� Lþ �Þ½utðL; tÞ þHwxtðL; tÞ�

¼ Dðx� Lþ �ÞF tip-xðtÞ � CxDðx� Lþ �Þut;fric-x, (11)

along with the following boundary conditions

me½
€dðtÞ þ wttðL; tÞ� � EIyywxxxðL; tÞ þ kzwðL; tÞ ¼ 0, (12)

mevttðL; tÞ � EIzzvxxxðL; tÞ þ kyðvðL; tÞ � yðL; tÞHÞ ¼ �kyufric-y, (13)

meuttðL; tÞ þ EAuxðL; tÞ þ kxðuðL; tÞ þ wxðL; tÞHÞ ¼ �kxufric-x, (14)

EIyywxxðL; tÞ � kxHðuðL; tÞ þ wxðL; tÞHÞ ¼ kxHufric-x, (15)

CTyxðL; tÞ � kyHðvðL; tÞ �HyðL; tÞÞ ¼ �kyHufric-y, (16)

and

wð0; tÞ ¼ wxð0; tÞ ¼ vxxðL; tÞ ¼ vð0; tÞ ¼ vxð0; tÞ ¼ uð0; tÞ ¼ yð0; tÞ ¼ 0. (17)

The above equations indicate that the transversal bending is coupled to longitudinal displacement and lateral
bending is coupled to torsional motion of microcantilever through geometrical terms, friction and
piezoelectric forces acting at the end of beam (the terms in the right-hand side of Eqs. (7)–(11)). Moreover,
the boundary conditions for those coupled motions are also coupled and nonhomogeneous.

4. Assumed mode model expansion

In order to numerically investigate the obtain equations of motion, we utilize assuming mode model
(AMM) to discretize the original partial differential equations into the ordinary differential equations. Since
boundary conditions in Eqs. (13)–(16) are nonhomogeneous, a new set of variables are defined in order to
obtain homogenized boundary conditions. Then, assuming that variables are separable, a set of ordinary
equations is obtained for different directions.

4.1. Coupled transversal– longitudinal displacement

As mentioned earlier, Eqs. (14) and (15) indicate that the coupled boundary conditions in longitudinal and
transversal directions are nonhomogeneous. To remedy this complexity, the boundary conditions should be
first homogenized. For this purpose, two new variables z and G are introduced with the following expressions:

wðx; tÞ ¼ zðx; tÞ � ufric-xF 1ðxÞ, (18)

uðx; tÞ ¼ Gðx; tÞ � ufric-xF 2ðxÞ, (19)

where Fi(x) (i ¼ 1,2) are geometrical functions. To determine these functions, Eqs. (18) and (19) are
substituted into Eqs. (12), (14) and (15). Then, all boundary conditions are forced to be homogenized
simultaneously in the new coordinates which result in the following conditions on geometrical functions F1

and F2:

F1ð0Þ ¼ F 01ð0Þ ¼ F 1ðLÞ ¼ F 01ðLÞ ¼ F 0001 ðLÞ ¼ 0 and F 001ðLÞ ¼ �
kxH

EIyy

, (20)
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F 2ð0Þ ¼ F 02ð0Þ ¼ F 2ðLÞ ¼ 0 and F 02ðLÞ ¼
kx

EA
. (21)

These geometrical functions can be obtained as

F1ðxÞ ¼
kxH

EIyyL3
x5 �

7

2
Lx4 þ 4L2x3 �

3

2
L3x2

� �
, (22)

F2ðxÞ ¼
kx

EAL
ðx2 � LxÞ. (23)

Now, applying Eqs. (18) and (19) into the original equations of motion in the vertical and longitudinal
directions (7), (8) and (11), the new equations can be written as

r½ €dðtÞ þ zttðx; tÞ� þ EIyyzxxxxðx; tÞ þ Bztðx; tÞ þ Czxtðx; tÞ

� CxHDxðx� Lþ �Þ½GtðL; tÞ þ zxtðL; tÞ� þ CzDðx� Lþ �ÞztðL; tÞ ¼ P1ðx; tÞ, (24)

where

P1ðx; tÞ ¼ Qðx; tÞ � Dxðx� Lþ �ÞHF tip-xðtÞ þ CxHDxðx� Lþ �Þut;fric-x

þ Dðx� Lþ �ÞF tip-zðtÞ þ rutt;fric-xF1ðxÞ þ EIyyufric-xF 00001 ðxÞ þ But;fric-xF 1ðxÞ

þ Cut;fric-xF 01ðxÞ � CxHDxðx� Lþ �Þut;fric-x½F 2ðLÞ þ F 01ðLÞ� þ CzDðx� Lþ �Þut;fric-xF1ðLÞ; (25)

m €dðtÞ þ

Z L

0

r½ €dðtÞ þ zttðx; tÞ�dxþme½
€dðtÞ þ zttðL; tÞ� ¼ P2ðx; tÞ, (26)

where

P2ðx; tÞ ¼ f ðtÞ þ

Z L

0

rutt;fric-xF1ðxÞdxþmeutt;fric-xF 1ðLÞ, (27)

and finally,

rGttðx; tÞ � EAGxxðx; tÞ þ CxDðx� Lþ �Þ½GtðL; tÞ þHzxtðL; tÞ� ¼ P3ðx; tÞ, (28)

where

P3ðx; tÞ ¼ Dðx� Lþ �ÞF tip-xðtÞ � CxDðx� Lþ �Þut;fric-x þ rutt;fric-xF2ðxÞ

� EAufric-xF 002ðxÞ þ CxDðx� Lþ �Þut;fric-x½F2ðLÞ þHF 01ðLÞ�, (29)

with the following boundary conditions:

me½
€dðtÞ þ zttðL; tÞ� � EIyyzxxxðL; tÞ þ kzzðL; tÞ ¼ 0, (30)

meGttðL; tÞ þ EAGxðL; tÞ þ kxðGðL; tÞ þ zxðL; tÞHÞ ¼ 0, (31)

EIyyzxxðL; tÞ � kxHðGðL; tÞ þ zxðL; tÞHÞ ¼ 0, (32)

zð0; tÞ ¼ zxð0; tÞ ¼ Gð0; tÞ ¼ 0. (33)

Now, utilizing above equations, the natural frequencies, mode shapes and time response of microcantilever for
coupled motion can be obtained.

4.1.1. Frequency equation, orthogonality conditions and mode shapes

In order to obtain natural frequencies and mode shapes of the system, the eigenvalue problem associated
with the transversal–longitudinal vibration of beam is obtained through applying free and undamped
conditions in Eqs. (24) and (29), which results in

rzttðx; tÞ þ EIyyzxxxxðx; tÞ ¼ 0 (34)
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and

rGttðx; tÞ � EAGxxðx; tÞ ¼ 0. (35)

The separation of variables can be assumed in the form of

zðx; tÞ ¼ FðxÞeiot and Gðx; tÞ ¼ LðxÞeiot, (36)

where F(x) and L(x) are the mode shapes of the microcantilever beam with a tip mass and o is the natural
frequency of the system. Applying Eq. (36) into Eqs. (34) and (35) results in the following differential
equations:

F0000ðxÞ � l4FðxÞ ¼ 0, (37)

L00ðxÞ þ x2LðxÞ ¼ 0, (38)

where

l4 ¼
ro2

EIyy

and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Iyy=A

q
l2. (39)

The solutions for Eqs. (37) and (38) can be written, respectively, as

FðxÞ ¼ K1½sinðlxÞ � sinhðlxÞ� þ K2½cosðlxÞ � coshðlxÞ�, (40)

LðxÞ ¼ K3 sinðl2
ffiffiffiffiffiffiffiffiffiffiffiffi
Iyy=A

q
Þx, (41)

where K1, K2 and K3 are coefficients of mode shapes to be determined.
Inserting Eqs. (40) and (41) into boundary conditions (30)–(32), the results can be written in the matrix form

as

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75

K1

K2

K3

2
64

3
75 ¼ 0, (42)

where

A11 ¼ �EIyyl
3F0001 ðLÞ � ðmeo2 � kzÞF1ðLÞ,

A12 ¼ �EIyyl
3F0002 ðLÞ � ðmeo2 � kzÞF2ðLÞ,

A13 ¼ 0,

A21 ¼ �
EIyy

H
l2F0001 ðLÞ,

A22 ¼ �
EIyy

H
l2F002ðLÞ,

A23 ¼ �meo2 sin xLþ EAx cos xL,

A31 ¼
EIyy

H
l2F001ðLÞ þ kxHlF0ðLÞ,

A32 ¼
EIyy

H
l2F002ðLÞ þ kxHlF02ðLÞ,

A33 ¼ kx sin xL, (43)
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and

F1ðLÞ ¼ F0002 ðLÞ ¼ sin lL� sinh lL,

F01ðLÞ ¼ F2ðLÞ ¼ cos lL� cosh lL,

F001ðLÞ ¼ F02ðLÞ ¼ � sin lL� sinh lL,

F0001 ðLÞ ¼ F002ðLÞ ¼ � cos lL� cosh lL. (44)

The frequency equation can now be obtained by equating the determinant of Eq. (42) to zero, which yields:

� EIyyl
3F0001 ðLÞ �

EIyy

H
kxl

2F002ðLÞ sinðxLÞ

�
þmeo2 EIyy

H
l2 sinðxLÞF002ðLÞ

þmeo2lkxH sinðxLÞF02ðLÞ � E2AIyy

H
x cosðxLÞl2F002ðLÞ � EAkxHlx cosðxLÞF02ðLÞ

�

þ ðmeo2 � kzÞ
EIyy

H
l2 sinðxLÞF002ðLÞF1ðLÞðkx �meo2Þ

�
�meo2lkxH sinðxLÞF02ðLÞF1ðLÞ

þ E2AIyy

H
x cosðxLÞl2F002ðLÞF1ðLÞ þ EAkxHlx cosðxLÞF02ðLÞF1ðLÞ

�

þ EIyyl
3F0002 ðLÞ �

EIyy

H
l2F002ðLÞkx sinðxLÞ þmeo2 EIyy

H
l2 sinðxLÞF001ðLÞ

�

þmeo2lkxH sinðxLÞF01ðLÞ � E2AIyy

H
x cosðxLÞl2F001ðLÞ � EAkxHlx cosðxLÞF01ðLÞ

�

� ðmeo2 � kzÞ
EIyy

H
l2 sinðxLÞF001ðLÞF2ðLÞðkx �meo2Þ

�
�meo2lkxH sinðxLÞF01ðLÞF2ðLÞ

þE2 AIyy

H
x cosðxLÞl2F001ðLÞF2ðLÞ þ EAkxHlx cosðxLÞF01ðLÞF2ðLÞ

�
¼ 0. (45)

In order to determine the coefficients of mode shapes, K1 and K3 can be derived from Eq. (42) in terms of K2 as

K1 ¼ �
A12

A11
K2, (46)

K3 ¼
1

A23
A21

A12

A11
� A22

� �
K2. (47)

To obtain unique solution for these coefficients, orthonormality between mode shapes can be utilized. For the
boundary conditions considered here, this condition is stated asZ L

0

mðxÞ½FiðxÞFjðxÞ þ LiðxÞLjðxÞ�dxþmeFiðLÞFjðLÞ þmeLiðLÞLjðLÞ ¼ dij, (48)

where dij is the Kronecker delta.

4.1.2. Forced motion analysis of coupled transversal/longitudinal motion

Using expansion theorem for the beam vibration analysis, the expressions for the transverse and
longitudinal displacements become:

zðx; tÞ ¼
X1
i¼1

FiðxÞqiðtÞ, (49)

Gðx; tÞ ¼
X1
i¼1

LiðxÞqiðtÞ, (50)
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where qi(t) are the generalized time-dependent coordinates. Now, inserting Eqs. (49) and (50) into Eqs.
(24)–(29) and after some manipulations, the discretized model for the transversal vibration and base motion of
microcantilever can be written, respectively, as

Ai
€dðtÞ þ

X1
j¼1

Bij €qjðtÞ þ
X1
j¼1

Cij _qjðtÞ þ
X1
j¼1

DijqjðtÞ ¼ f iðtÞ; i ¼ 1; 2; . . . ;1, (51)

where

Ai ¼

Z L

0

rFiðxÞdx; Bij ¼

Z L

0

rFiðxÞFjðxÞdx,

Cij ¼

Z L

0

FiðxÞ½BFjðxÞ þ CF0jðxÞ�dxþ CxHF0iðL� �Þ½F
0
jðLÞ þ LjðLÞ� þ CzFiðL� �ÞFjðLÞ,

Dij ¼ EIyy

Z L

0

FiðxÞF0000j ðxÞdx,

f iðtÞ ¼

Z L

0

FiðxÞP1ðx; tÞdx, (52)

and base motion can be expressed as

C €dðtÞ þ
X1
i¼1

Li €qiðtÞ ¼ P2ðx; tÞ, (53)

where

C ¼ ðmþme þ rLÞ; Li ¼

Z L

0

rFiðxÞdxþmeFiðLÞ. (54)

The truncated n-mode description for Eqs. (51) and (53) can now be presented in the following matrix form:

M€qþ C_qþ Kq ¼ Fu, (55)

where

M ¼

C L1 L2 . . . Ln

A1 B11 B12 . . . B1n

A2 B21 B22 . . . B2n

..

. ..
. ..

. . .
. ..

.

An Bn1 Bn2 . . . Bnn

2
66666664

3
77777775

C ¼

0 0 0 . . . 0

0 C11 C12 . . . C1n

0 C21 C22 . . . C2n

..

. ..
. ..

. . .
. ..

.

0 Cn1 Cn2 . . . Cnn

2
66666664

3
77777775
,

K ¼

0 0 0 . . . 0

0 D11 D12 . . . D1n

0 D21 D22 . . . D2n

..

. ..
. ..

. . .
. ..

.

0 Dn1 Dn2 . . . Dnn

2
66666664

3
77777775

q ¼

dðtÞ

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
,
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F ¼

1 0 0 F4

0 F 11 F21 F31

0 F 12 F22 F32

..

. ..
. ..

. ..
.

0 F 1n F2n F3n

2
66666664

3
77777775

u ¼

f ðtÞ

V ðtÞ

_V ðtÞ
€V ðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;
, (56)

where

F 4 ¼
mx

kx

ba

Z L

0

rF 1ðxÞdxþmeF 1ðLÞ

� �

F̄ 1i ¼ ba
mx

kx

EIyy

Z L

0

FiðxÞF
0000
1 ðxÞdxþHF0iðL� �Þ þ FiðL� �Þ

� �

F̄ 2i ¼ ba
mx

kx

½B

Z L

0

FiðxÞF1ðxÞdxþ C

Z L

0

FiðxÞF
0
1ðxÞdx

þ CxHF0iðL� �ÞðF2ðLÞ þ F 01ðLÞ � 1Þ þ CzFiðL� �ÞF 1ðLÞ�

F̄ 3i ¼ ba
mx

kx

Z L

0

rFjðxÞF 1ðxÞdx i ¼ 1; 2; . . . ;1 (57)

Eq. (55) can now be written in the form of state-space as

_X ¼ XXþ Gu, (58)

where

X ¼
0 I

�M�1K �M�1C

� �
2ðkþ1Þ�2ðkþ1Þ

; G ¼
0

M�1F

� �
2ðkþ1Þ�1

; C ¼
0

M�1

� �
2ðkþ1Þ�1

and X ¼
q

_q

( )
2ðkþ1Þ�1

.

(59)

The longitudinal vibration of system can also be expressed as

X1
j¼1

Pij €qjðtÞ þ
X1
j¼1

Rij _qjðtÞ þ
X1
j¼1

UijqjðtÞ ¼ Y iðtÞ; i ¼ 1; 2; . . . ;1, (60)

where

Pij ¼

Z L

0

rLiðxÞLjðxÞdx; Rij ¼ CxLiðL� �Þ½LjðLÞ þHF0jðLÞ�,

Uij ¼ �EA

Z L

0

LiðxÞL00j ðxÞdx; Y iðtÞ ¼

Z L

0

LiðxÞP3ðx; tÞdx, (61)

and the truncated n-mode description for Eqs. (60) is as follows:

ML €qL þ CL _qL þ KLqL ¼ FLuL, (62)

where

ML ¼

P11 P12 . . . P1n

P21 P22 . . . P2n

..

. ..
. . .

. ..
.

Pn1 Pn2 . . . Pnn

2
66664

3
77775 CL ¼

R11 R12 . . . R1n

R21 R22 . . . R2n

..

. ..
. . .

. ..
.

Rn1 Rn2 . . . Rnn

2
66664

3
77775,
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KL ¼

U11 U12 . . . U1n

U21 U22 . . . U2n

..

. ..
. . .

. ..
.

Un1 Un2 . . . Unn

2
66664

3
77775 qL ¼

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

FL ¼

FL�11 FL�21 F L�31

..

. ..
. ..

.

FL�1n FL�2n F L�3n

2
664

3
775 uL ¼

V ðtÞ

_V ðtÞ
€V ðtÞ

8><
>:

9>=
>;, (63)

where

FL�1i ¼ ba FiðL� �Þ �
mx

kx

EA

Z L

0

FiðxÞF
00
2ðxÞdx

� �
,

FL�2i ¼ ba
mx

kx

CxFiðL� �Þ½F 2ðLÞ þHF 01ðLÞ � 1�,

FL�3i ¼ ba
mx

kx

Z L

0

rFiðxÞF2ðxÞdx. (64)

Finally, Eq. (55) can be expressed in the form of state-space as

_XL ¼ XLXL þ GLuL, (65)

where

XL ¼

0 I

�M�1
L KL �M�1

L CL

" #
2ðkþ1Þ�2ðkþ1Þ

; GL ¼

0

M�1
L FL

" #
2ðkþ1Þ�1

; CL ¼

0

M�1
L

" #
2ðkþ1Þ�1

and

X L ¼
qL

_qL

( )
2ðkþ1Þ�1

. (66)

4.2. Coupled lateral bending– torsion vibrations

Similar to pervious problem, torsion and lateral bending vibrations are also coupled through geometrical
terms, friction and piezoelectric forces. The coupling terms appear in the right-hand side of Eqs. (9) and (10) as
well as coupled terms in the boundary conditions (13) and (16). Comparing the eigenvalue problems for lateral
bending–torsion and transversal bending–longitudinal motions (Eqs. (67)–(70)) reveals that the nature of
equations for lateral and transversal bending and that of longitudinal and torsion are similar. The differences
are related to constant coefficients of corresponding partial differential equations. Applying the similar
procedure explained in the preceding section, the mode shapes, frequency equation, orthogonality condition
and state-space representation for the coupled lateral bending–torsion motion can be also obtained. For the
sake of briefness and undue complication, we do not provide the details here.

rvttðx; tÞ þ EIzzvxxxxðx; tÞ þ Bvtðx; tÞ þ Cvxtðx; tÞ ¼ 0, (67)

r½ €dðtÞ þ wttðx; tÞ� þ EIyywxxxxðx; tÞ �Qðx; tÞ þ Bwtðx; tÞ þ Cwxtðx; tÞ ¼ 0, (68)

Jyttðx; tÞ � CTyxxðx; tÞ ¼ 0, (69)

ruttðx; tÞ � EAuxxðx; tÞ ¼ 0. (70)
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Table 1

Physical parameters of the system.

Properties Symbol Value Unit

Beam length L 460 mm
Beam thickness t 2 mm
Beam width b 50 mm
Beam density r 2330 kg/m

Beam elastic modulus E 120 GPa

Beam moment of inertia I 3.33� 10�23 m4

Tip height H 20� 10�6 M

Tip mass me 3� 10�10 kg

Base mass m 0.001 kg

Beam viscous damping B 1� 10�8 kg/s

Beam structural damping C 1� 10�8 kg/ms

Contact radius a 50� 10�6 m

Piezoelectric coefficient of material b 40 N/mV

Table 2

Natural frequencies of microcantilever for vertical piezoresponse force microscopy.

kz ¼ 0 kz ¼ 1 kz ¼ 3 kz ¼ 5 kz ¼ 10 kz ¼ 100 kz ¼ 1000 kz ¼ 2000

o1(10
6) 0.0687 0.1838 0.2459 0.2665 0.2838 0.3001 0.3017 0.3018

o2(10
6) 0.4310 0.4777 0.5720 0.6483 0.7887 0.9575 0.9763 0.9773

o3(10
6) 1.2069 1.2227 1.2574 1.2951 1.3958 1.9425 2.0323 2.0368

Table 3

Natural frequencies of microcantilever for longitudinal piezoresponse force microscopy.

kx ¼ 0 kx ¼ 1 kx ¼ 3 kx ¼ 5 kx ¼ 10 kx ¼ 100 kx ¼ 1000 kx ¼ 2000

o1(10
6) 0.0687 0.0697 0.0714 0.0730 0.0765 0.5183 0.5790 0.5848

o2(10
6) 0.4310 0.4329 0.4364 0.4399 0.4478 1.3150 1.4311 1.4446

o3(10
6) 1.2069 1.2087 1.2122 1.2156 1.2238 2.4878 2.6629 2.6867

Table 4

Natural frequencies of microcantilever for vertical-longitudinal piezoresponse force microscopy where k ¼ kx ¼ kz.

k ¼ 0 k ¼ 1 k ¼ 3 k ¼ 5 k ¼ 10 k ¼ 100 k ¼ 1000 k ¼ 2000

o1(10
6) 0.0687 0.1838 0.2466 0.2685 0.2898 0.3539 0.4200 0.4218

o2(10
6) 0.4310 0.4791 0.5741 0.6497 0.7686 1.0107 1.1569 1.1791

o3(10
6) 1.2069 1.2227 1.2574 1.2951 1.3958 1.9425 2.0323 2.0368
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5. Numerical results and discussions

Based on the modeling procedure described above, a numerical simulation procedure is adopted to study
the variation of natural frequency, mode shape and time response of system with respect to viscoelastic and
piezoelectric properties of materials. Table 1 lists the parameter values used for the numerical simulations.
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For the simulation purpose, the equation of motions is truncated into only three modes. The eigenvalue
problem associated with the transversal–longitudinal motion of beam is utilized to determine natural
frequencies of microcantilever. Tables 2–4 list the natural frequency of the beam for; with only vertical spring
(vertical PFM), with only longitudinal spring (longitudinal PFM), and with combined vertical–longitudinal
Fig. 4. Bending mode shapes of microcantilever for: (a) first mode of vertical, (b) first mode of vertical–longitudinal, (c) second mode of

vertical, (d) second mode of vertical–longitudinal, (e) third mode of vertical, and (f) third mode of vertical–longitudinal piezoresponse

force microscopy; where —: k ¼ 0; – – –: k ¼ 1; - - - - - -: k ¼ 3; - – - – k ¼ 5; : k ¼ 10; : k ¼ 100; : k ¼ 1000; for k ¼ kz (a, c

and e) and for k ¼ kx ¼ kz (b, d and f). The units of kx and kz are (N/m).
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springs (vertical–longitudinal PFM), respectively. Results indicate that in vertical PFM, with the increase
in sample spring constant, the natural frequency of microcantilever increases for all three mode shapes
(see Table 2). Similar trend is seen for the natural frequency of longitudinal PFM (see Table 3). Results
demonstrate that the variation of natural frequency with respect to the stiffness of spring show more smooth
trend in vertical PFM compared to longitudinal one. In vertical–longitudinal PFM, the increase in the natural
frequency is very small for the smaller spring constants; however, for the spring constant higher than 100N/m
the natural frequency for all three modes shows significant increase. At this range, longitudinal system displays
higher natural frequency when compared to vertical PFM. Table 4 lists the natural frequency of the
microcantilever for vertical–longitudinal PFM.

Fig. 4a depicts the first transversal mode shape of microcantilever in vertical system for different equivalent
sample spring constants. It is seen that the mode shape of microcantilever is heavily dependent upon the elastic
properties of sample. Due to presence of tip mass, mode shape show concave curvature for kz ¼ 0 at the end of
beam. As the spring constant increases in the vertical direction, the radius of curvature decreases accordingly.
This implies that higher spring constant makes more restriction at the end of microcantilever. Therefore, the
clamped-free condition of the beam is converted into clamped-pinned condition for stiffer samples. Fig. 4b
presents the mode shape of microcantilever beam in vertical–longitudinal PFM. The presence of longitudinal
spring at stiffer material (higher spring constants) significantly affects the shape of curvature at the entire
Fig. 5. Longitudinal mode shapes of microcantilever for: (a) first mode of longitudinal, (b) first mode of vertical–longitudinal, (c) third

mode of longitudinal, and (d) third mode of vertical–longitudinal piezoresponse force microscopy; where —: k ¼ 3; – – –: k ¼ 5; - - - - - -:

k ¼ 10; - – - –: k ¼ 100; : k ¼ 1000; for k ¼ kz (a and c) and for k ¼ kx ¼ kz (b and d). The units of kx and kz are (N/m).
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Fig. 6. Modal frequency response plot of microcantilever tip displacements at kx ¼ kz ¼ 10N/m and for four different damping ratios in:

(a) transversal direction without longitudinal term (—: Cz ¼ 10�7; : Cz ¼ 5� 10�7; : Cz ¼ 10�6; and : Cz ¼ 5� 10�6) and

(b) longitudinal direction without transversal term (—: Cx ¼ 0; : Cx ¼ 10�11; : Cx ¼ 10�10; and : Cx ¼ 5� 10�9). The

units of damping coefficients are (N s/m).

Fig. 7. Modal frequency response plot of microcantilever tip displacements for four damping ratios in longitudinal direction (without

transversal term) and two spring constants: (a) kx ¼ kz ¼ 20N/m and (b) kx ¼ kz ¼ 35N/m; where (—: Cx ¼ 0; : Cx ¼ 10�11; :

Cx ¼ 10�10; and : Cx ¼ 5� 10�9). The units of damping coefficients are (N s/m).
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length of beam compared to vertical spring. At this condition, the amplitude of vibration decreases
significantly.

Figs. 4c–d depict the mode shapes of microcantilever for second natural frequency in vertical and
vertical–longitudinal PFM, respectively. Results demonstrate that the amplitude of mode shape at the end of
microcantilever increases for smaller values of spring constants. However, for higher spring constants, as
expected, the amplitude of vibration decreases significantly. The reason is that as the constraint force is
applied at the free end of the beam, the first extremum point of mode shapes moves left side with the increase
in the spring constants. This results in the upward shift in the mode shapes of the beam with change in the
slope of curvature at the end of microcantilever. As the spring force increases, the slope decreases accordingly.
Finally, at some points spring force can overcome this shift which leads to decrease in the amplitude of
vibration. Similar trend can be observed for the third mode shape of microcantilever (see Fig. 4e–f).

Figs. 5a–b depict the first longitudinal mode shape of microcantilever for longitudinal and vertical–longi-
tudinal PFM, respectively. Results indicate that at higher spring constants the effect of coupling could have a
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significant impact on the longitudinal mode shape of microcantilever. However, with the increase in the
natural frequency of the system, the importance of coupling effect on the longitudinal vibration of
microcantilever decreases accordingly (see Fig. 5c–d for the mode shape of microcantilever at third natural
frequency of system).

Fig. 6a shows modal frequency response plot of microcantilever tip displacements at kx ¼ kz ¼ 10N/m at
four different damping ratios in the transversal direction where the damping term in the longitudinal direction
is not taken into account. As expected, with the increase of damping coefficient, the amplitude of vibration
decreases such that for Cz ¼ 5� 10�6NS/m the effect of third resonant frequency is vanished. Along this line,
the effect of longitudinal damping term on the vibration of microcantilever is shown in Fig. 6b. It is seen that
the modal frequency of microcantilever in the presence of longitudinal damping term shows similar trend as
observed in the previous case. More especially, Fig. 6b demonstrates that at kx ¼ kz ¼ 10N/m, the resonance
frequency of discrete system (tip-sample junction) reaches the second resonance frequency of the
microcantilever. For this reason, the damping term does not influence the vibration amplitude at this
frequency. Finally, Fig. 7 illustrates the effect of longitudinal damping term on the modal frequency of
microcantilever at two different spring constants. The amplitude of vibration at kx ¼ kz ¼ 20N/m decreases
for all three resonance frequencies; however, at kx ¼ kz ¼ 35N/m the resonance frequency of sample reaches
the third resonance frequency of microcantilever.

In summary, it is shown that in vector PFM, the effect of coupling terms such as spring and damping terms
significantly affect the natural frequencies and mode shapes of microcantilever. It is also observed that depending
on the viscoelastic properties of sample; the resonance frequency of sample can reach one of resonance frequency
of microcantilever. This results in un-damped vibrating condition in the corresponding frequency.

6. Conclusions

For materials with arbitrary crystallographic orientations, the vibration of microcantilever used in the PFM
may experience combined motions in the vertical–longitudinal and/or lateral-torsional directions. In this
study, a comprehensive dynamic model was proposed for a vector PFM with combined motions. It was shown
that PFM can be represented as a set of partial differential equations which can be transferred into ordinary
differential equations using assumed mode method. The PFM system was also written in the state-state
representation form. It was shown that neglecting the coupling terms can affect the dynamic response of the
system significantly. Moreover, effects of spring constant and damping coefficient of material in the vibration
of microcantilever were studied in more detail. Results demonstrated that materials with different mechanical
properties can induce different constraints at the free end of microcantilever, and materials with higher
stiffness can change the clamped-free condition of cantilever into clamped-pinned condition.
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